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celebrated Poincaré Conjecture
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   In early April 2002, Dr. Grigori Perelman of the
Steklov Institute of Mathematics in St. Petersburg gave
a series of public lectures at the Massachusetts Institute
of Technology. In the lectures he explained work laid
out in two articles, and how this work will establish a
number of important mathematical results, including
the famous Poincaré Conjecture. Mathematicians are
still examining Perelman’s arguments for possible
errors, but up to now they have withstood all
criticism.[1]
   [In considering the following explanation, we advise
readers to either locate actual ball and doughnut shapes
to look at, or to use pencil and paper to draw them. This
makes visualizing and grasping the content of this
article easier.]
   Poincaré’s conjecture and Perelman’s work deal with
mathematical objects called manifolds. Loosely
speaking, these are geometric objects that “up close”
look like a line segment (one-dimensional manifolds), a
disk in the plane (two-dimensional manifolds), a ball in
solid space (three-dimensional manifolds), and so on in
higher dimensions.[2]
   The surface of a ball is an example of a two-
dimensional manifold: to a very small ant walking
along the surface of a very large beach ball, it always
appears that he is walking on a flat disk. The fact that
the surface of the earth is a two-manifold, and hence
“up close” looks like a plane, made early humanity
theorize that the earth was flat. However, pictures of
the earth taken from space show that the surface of the
earth is not a flat plane, but actually is also the surface
of a ball.
   The previous two examples give rise to a very
important idea of equivalence. If one had a (very
stretchy and malleable) beach ball and a lot of air, one
could imagine inflating it, stretching it and pulling it so

that it actually took on the shape of the surface of the
earth. Mathematicians express this by saying that the
surface of a beach ball and that of the earth are
topologically equivalent.
   However, not all surfaces are topologically
equivalent: for example, one may compare the surface
of a ball and the surface of a doughnut. One observes
that a loop on the surface of a ball (the 2-dimensional
sphere) can always be pulled back along the surface
until it collapses to a point. However, a loop around the
inner hole of the surface of a doughnut cannot be
shrunk to a point without actually cutting into the
doughnut or otherwise leaving its surface. Poincaré
showed that this meant that the surface of the ball and
that of a doughnut could not be topologically
equivalent. In fact, a beautiful classification theorem
known to mathematicians of Poincaré’s time shows
that any surface on which all loops can be shrunk down
to a point is topologically equivalent to the
2-dimensional sphere.
   The Poincaré Conjecture tries to generalize this to
higher dimensions. Specifically, it asks: is every
3-dimensional manifold with the property that all loops
on it can be shrunk to a point topologically equivalent
to the 3-dimensional sphere?
   Explaining precisely what a 3-dimensional sphere is
to a lay audience presents some difficulties, as it is
harder to visualize. Technically, one reasons by
analogy. The fact that one traces out a 1-dimensional
sphere (the edge of a circle) with a compass on a
2-dimensional plane indicates that a 1-dimensional
sphere consists of the points in 2-dimensional space a
fixed distance away from given point (the needle point
of the compass). Similarly, the 2-dimensional sphere
(the surface of a solid ball) consists of the points a fixed
distance away from a given point in 3-dimensional
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space. So, the 3-dimensional sphere consists of the
points a fixed distance away from a given point in
4-dimensional space.
   The Poincaré Conjecture remained unsolved during
the entire twentieth century and defeated the efforts of
many of the best topologists and geometers of the time.
It acquired a status in the mathematical world similar to
that of Fermat’s famous Last Theorem, recently proved
by Andrew Wiles. By the mid-twentieth century
analogous versions of the Poincaré Conjecture had been
shown to be true in dimensions above 3. However, all
of the numerous efforts on the three-dimensional case
failed.
   Perelman’s work aims to prove the Poincaré
Conjecture by proving a far larger classification
theorem, the recent Geometrization Conjecture of
William Thurston. Thurston’s Geometrization
Conjecture predicts that any 3-manifold can be cut up
into pieces, each of which can be stretched and bent
until it possesses one of eight fixed geometric
structures.
   The study of these geometric structures is differential
geometry—the basic mathematical language of
Einstein’s general relativity theory in physics, and
Perelman’s area of expertise. Broadly speaking, a
geometric structure on a manifold is a way of
specifying the behavior of shortest paths between pairs
of points in the manifold.
   We will give only one example. On the surface of the
earth, the shortest path between two points (taking one
of the points to be the North Pole) is along the meridian
of fixed longitude connecting the North Pole to the
other point. This is why if one draws the flight path of a
New York-Tokyo flight on a flat world map, it does not
follow the straight line connecting the two cities on the
map, but instead curves up north over Canada and then
down along the coast of Northeast Asia. The airplane is
roughly following the (curved) minimum-length path
between New York and Tokyo on the surface of the
earth, the famous “great circle” route.
   Much of the work of differential geometry over the
last century has been to establish links between the
topological properties of manifolds (e.g. the structure of
loops on them) and what sort of geometric structures
they can have. If Perelman’s work does give a proof of
Thurston’s Geometrization Conjecture, this together
with previous work will establish that if a

3-dimensional manifold has all of its loops shrinkable
to points, it carries a geometric structure that forces it to
be topologically equivalent to the three-dimensional
sphere, proving Poincaré’s Conjecture.
   Perelman’s spectacular efforts towards solving
several of the great problems in three-dimensional
geometry are particularly remarkable since they are
taking place in a mathematical environment devastated
by the collapse of the Soviet Union. The economic
“shock therapy” applied to the former USSR forced
universities across the country to suspend payment of
professors’ salaries, and resulted, during the
mid-1990s, in a massive flight of trained
mathematicians from the former USSR to universities
in the wealthy countries, especially the US.
   Notes:
1. Perelman’s articles are highly technical and written
for specialists in the field of differential geometry.
However, they are publicly available online at the arxiv
server, which mathematicians now commonly use to
post their results. Interested readers may consult them
at http://www.arxiv.org/abs/math.DG/0211159 and
http://www.arxiv.org/abs/math.DG/0303109.
2. There is a technical disclaimer: to exclude bad
behavior, we will consider only manifolds that are
compact—roughly speaking, don’t stretch out
forever—and connected—i.e., come in one piece. The
other manifolds are fairly easy to obtain from these.
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